AN ELECTRICAL ARC IN A TURBULENT GAS FLOW

V. V. Berbasov and M. F. Zhukov UDC 621.3.014.31

The self-similar solution of the equations describing an axisymmetric electrical
arc in a turbulent gas flow is presented.

Electrical arc stabilization in a plasmotron is often accompliehed by supplying gas to
the discharge chamber with a tangential velocity [1]. Some studies have been dedicated to
experimental investigation of an arc under such conditions [2], but they are mainly of a
qualitative character. The theoretical approach is beset with great difficulties, so that
available studies deal with an idealized formulation [3]. Plasma flow with intense gasdyna-
mic or abrupt geometric compression (for example, by a diaphragm, etc.) has not been studied
thoroughly either experimentally or theoretically. In such cases solution of the problem re-
quires use of a complete set of equations: Navier—Stokes, Maxwell's, and energy equations.

In the present study we will consider arc discharge zones with the following assumptions:
the plasma is in equilibrium and the flow is steady state; within the arc zone p = const,
u = const, At/c = const; viscous dissociation and radiant losses will be neglected, as will
kinetic energy of the flow; electrical conductivity will depend only on temperature, i.e.,
c = o(h).

We introduce the dimensionless quantities z= 2[Ry, 1r=1[Ry, p= p/Pu%, h = (h — ho)/ho, u = ultl,
v =0/uy, T =I/Ty, 6 =0/0y, % =n/ny, E,=E,/E,, E, =E,/E,, B= B,/B,, Here the subscript 0 de-
notes some constant base parameters, in particular he is the enthalpy at the boundary of the
arc, %,=1/2n.

In this case the system of dimensionless equations describing the parameters of an axi-
symmetric arc discharge can be written in the form [4]
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with boundary conditions r = 0: —a—ﬁ—: oh

2 CU=ug (), v=0x (), T=Tr(),
or or '

bzﬁR (?), %=1 h=0 . Here ﬁ(é) is the boundary of the electric arc (o = 0).

The boundary conditions on the "faces" of the arc (z = 0 and z = zo) will not be consid-
ered, since we are seeking a self-similar solution of system (1)-(8).

It can easily be proved that in the system of dimensionless equations obtained, aside
from the known similarity criteria —the Prandtl, Reynolds, and Rossby numbers — there are four
more dimensionless parameters, relating four arbitrary base values. We define these from the
conditions
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whence we obtain the following base values of the corresponding quantities:
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The Reynolds and Rossby numbers take on the form
1 1 I 1 i,
Re=*2—ﬂ-}T‘VP«eP, R0=—2—J—I——IT1/ ral
Estimates show that at I ~ 10°A,h ~ 107 J/kg, o ~ 10® 1/Q'm, 0 ~ 1072 kg/m®, we have uo =
10 m/sec, Ro ~ 107% m, E; ~ 10°® V/m, Re ~ 10.
We will approximate electrical conductivity as a function of enthalpy in the form
o = o A" (9

Performing the replacement of variables n = I_‘/R(E), z =2 1in system (1)-(8), we find that if
Eq. (9) is valid, then at R(z) = Az + const the following self-similar solution of Eqs. (1)~
(8) exists:
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Considering Eq. (10), after simple transformations Eqs. (1) -(8) can be reduced to the form

m
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The boundary conditions for system (11)-(16) are
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where §, = ——#'; P,= = (x ;R We do not write the integral condition for
nh” n? dn dn*

total flow conservation, since it is satisfied automatically upon introduction of the elec-
tric current function. Considering energy loss to radiation in the form
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we obtain one more dimensionless complex in Eq. (5). If in boundary conditions (17) we take
v(l)=v, , then from Eq. (11) we can find the plasma flow rate through the arc column section
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The pressure p is determined from Eq. (13) by integration over n. The value p(l) = p* at
= 1 is unknown, and therefore p* must be found from condition (18).

In the calculations performed below, boundary conditions are specified for vy or Q (which
in principle is the same thing), while the value of p(l) is determined by the condition of
satisfaction of condition (18).

Integrating Eqs. (14) and (16), we obtain
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Fig. 1. Change in electric field intensity components (B, B;), axial velocity com-
ponent (u), and enthalpy (h) over arc section. Solid lines, Q = 0.1, A = —0.6;
dashed lines, Q = 0.5, X = —-0,25,

Fig. 2. Change in pressure (p), axial velocity component (G),_and integral quanti-
ties B, C, and F over arc section. Re = 10, Ro = 0.1, Q =1, u = 1.

The constants Cy and C, are found from the condition T'(l)=1, %(l)= 1.

In solving system (11)-(16) the parameter ) must be found from an additional condition,
which proves to be_the integral law of conservation of energy. If we integrate Eq. (5) in
the new variables z, n over n from 0 to 1, we obtain a second-~degree ordinary differential

equation in A. With consideration of Eq. (10) this equation degenerates into a second-degree
algebraic equation in A:
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It follows from analysis of the self-similar solutions (19), (20) that:

2
1. The dependence of electric field intensity on i(;) has the form E~R '™ . TFor

real gases the exponent n varies within the range O<<n<{l, PFor air n ~ 0,5 and E
E—I.SS.

2., The axial component of the electric field intensity B, is a monotonically decreas-
‘ing function of n:

C. .
p, = ————7> Bz (m) <O.
(1-+ T

This is also true of the modulus of the electric field vector
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3. The radial component of the intensity By may be a nonmonotonic function of n:
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This is true because the function

m,,(l_wﬁ_)
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1
may change sign at the point n*::—ﬁJ-L//l%;l? ; at |A}] = 1 and n = 0.5 we obtain nx = 0.8.

4, If MLl , then from system (11)-(16) we can obtain an equation of the boundary
layer type; in this case Bz ~ const, B, = 0.

The solution of system (11)-(16) depends on six parameters. Study of their effect on
the solution is a complex problem, since change of one or the other parameter induces change
in the entire solution. Calculations have shown that the solution of Egs. (11)-(16), (21)
for specified ﬁ*, Q, Re, Ro, Pr, and n exists only for one value of A. In determining the
pressure in Eq. (13) only inertial and magnetic forces were considered, i.e.,
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Results of calculating these equations are presented in Figs. 1-4 for Pr = 0.5 and n = 0.5
and several values of Re, Ro, Q, and uy. Change in the electrical field intensity (B,, B,),
axial velocity (u), and enthalpy (h) over arc section is shown in Fig. 1 for Re = 10, Ro =
1, ug = 1 and Q values of 0.1 (solid lines) and 0.5 (dashed lines). In this regime a solu-

tion exists only for a narrowing arc (A < 0); in the first case A= —0.6, in the second A =
—-0.25.

Profiles of pressure p and axial velocity u at Re = 10, Ro = 107}, Q = 1, ug = 1 are
shown in Fig. 2. In this case the pressure changes in an unusual manner: two minima exist —
one on the axis, the second in the region of the arc boundary, with the second pressure mini-

mum being deeper. To explain this effect, Fig. 2 also shows the following integral quanti-
ties:
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It is evident that in the arc boundary zone the function B(n) has a minimum. This is
because in this region the changes in axial and radial velocity are large because of abrupt
expansion of the arc. In this regime X = 1 and reverse flows exist in the arc, which is
clearly evident from the axial velocity profile, which changes sign. In this case the en-
thalpy profile has a minimum on the axis (Fig. 3, solid lines). This is due to transfer of

gas flows with a lower temperature by the counterflow from regions lying further down the
flow.

The radial velocity v in the central region is negative (Fig. 3), after which, not reaching
the minimum pressure zone, the quantity v increases abruptly. The flow clearly is divided
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Fig. 3. Pressure, enthalpy, and radial and axial velocity component profiles. Sol-
id lines, Ro = 0.1, X = 1; dashes, Ro = 1, A = 0.5.

Fig. 4. Change in electrical field intensity and angular velocity (w) over arc
section. Solid lines Ro = 0.1, A = 1; dashes, Ro = 1, X = 0.5,

into two regions: an internal one in which the radial velocity is quite low and directed to-
ward the center, and an external one in which the pressure minimum and temperature maximum
exist, and the positive radial velocity components are large. Figure 4 shows the changes in
the quantities w=I/n, f. and B, along the arc radius. In the axial region the w values are
low, so that we can consider the flow therein practically untwisted. The radial electric
field intensity component B, at the point n = 0.8 has a maximum.

Figures 3-4 show the characteristics of the electric arc (dashed lines) for the same
conditions but with Ro = 1 and in this case » = 0.5. Hence it can be concluded that the de-
gree of torsion has a strong influence on the characteristics of an electric arc in a turbu
lent flow.

In conclusion we will note that the existence of two pressure minima has been observed
in turbulence chambers in the absence of an electric arc [5]. This can apparently be ex-
plained by stable maintenance of solid particles introduced into the turbulence chamber in
some orbit or even several orbits. The latter has been confirmed by experimental studies [2],
with a flow containing smoke particles injected into the chamber.

NOTATION

u, axial velocity component; v, radial velocity component; =g r, circulation; o, ,
tangential velocity component; p, plasma density; u, dynamic viscosity; Ay, thermal conduc-
tivity; Cps specific heat at constant pressure; o, plasma electrical conductivity; u,, mag-
netic permittivity; E,, E,, electric field intensity components along axis z and radius r,
respectively; I, total current; By, electric arc magnetic field; «, electric current func-
tion; T'o, circulation at electric arc boundary; Ro = ugRe/To, Rossby numberj Re = puoRo/u,
Reynolds number; Pr, Prandtl number; Pe = RePr, Peclet number.
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