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The self-similar solution of the equations describing an axisymmetric electrical 
arc in a turbulent gas flow is presented. 

Electrical arc stabilization in a plasmotron is often accompliehed by supplying gas to 
the discharge chamber with a tangential velocity [i]. Some studies have been dedicated to 
experimental investigation of an arc under such conditions [2], but they are mainly of a 
qualitative character. The theoretical approach is beset with great difficulties, so that 
available studies deal with an idealized formulation [3]. Plasma flow with intense gasdyna- 
mic or abrupt geometric compression (for example, by a diaphragm, etc.) has not been studied 
thoroughly either experimentally or theoretically. In such cases solution of the problem re- 
quires use of a complete set of equations: Navier--Stokes, Maxwell's, and energy equations. 

In the present study we will consider arc discharge zones with the following assumptions: 
the plasma is in equilibrium and the flow is steady state; within the arc zone p = const, 

= const, Xt/c p = const; viscous dissociation and radiant losses will be neglected, as will 
kinetic energy of the flow; electrical conductivity will depend only on temperature, i.e., 

= a ( h ) .  

- -  ~ h (h ~ho)/ho, u U/Uo, We introduce the dimensionless quant_ities ~=z_/Ro, r=f/Ro, p~ plpuo, = = 
v= V/Uol F= FIFo, a = a/%, • =•215 E~ =Ez/Eo, Et = Et/Eo, B = B~/Bo Here the subscript 0 de- 
notes some constant base parameters, in particular ho is the enthalpy at the boundary of the 
arc, ~0=f/2~. 

In this case the system of dimensionless equations describing the parameters of an axi- 
symmetric arc discharge can be written in the form [4] 
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p = pR(Z), • = 1, h= 0 �9 Here R(z) is the boundary of the electric arc (~ = 0). 

The boundary conditions on the "faces" of the arc (z = 0 and z = ~o) will not be consid- 
ered, since we are seeking a self-similar solution of system (1)-(8). 

It can easily be proved that in the system of dimensionless equations obtained, aside 
from the known similarity criteria--the Prandtl, Reynolds, and Rossby numbers -- there are four 
more dimensionless parameters, relating four arbitrary base values. We define these from the 
conditions 

f 2 2 2 B0 
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whence we obtain the following base values of the corresponding quantities~ 
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The Reynolds and Rossby numbers take on the form 

1 1 / i z ~ -  7 
Re = 2---~---~V't~#,. Ro = 2n Fo V P 

Estimates show that at I - 10 2A,h % 10 7 J/kg, ~ ~ i0" I/~'m, 0 ~ 10 -2 kg/m 3, we have Uo = 
i0 m/sec, Ro ~ 10 -2 m, Eo ~ 10 3 V/m, Re ~ I0. 

We will approximate electrical conductivity as a function of enthalpy in the form 

q = a0 ~ .  (9) 

P e r f o r m i n g  the  r e p l a c e m e n t  of  v a r i a b l e s  ~ = { / R ( z ) ,  z = z i n  sys t em ( 1 ) - ( 8 ) ,  we f i n d  t h a t  i f  
Eq. (9) i s  v a l i d ,  t h e n  a t  R(z) = t z  + c o n s t  t h e  f o l l o w i n g  s e l f - s i m i l a r  s o l u t i o n  o f  Eqs.  (1 ) -  
(8) exists: 
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The boundary conditions for system (11)-(16) are 

n = o :  f = ~ = : ' = ~ ' = o ;  

~ l = l : r - -  1, ~ = 1 ,  u = u , ,  v = v , ,  p = p , ,  h = 0 ,  

(i5) 

(16)  

(i7) 

1 %. _ ~- ~ '  
where ~z-- ~ x, ~----- h n x' : ; = We do not write the integral condition for 

~h n d~l dr[ 2 

total flow conservation, since it is satisfied automatically upon introduction of the elec- 
tric current function. Considering energy loss to radiation in the form 

, q) 
q~ = qoh~+L q~ = ,{~+~ (n) ~ , = , 

1+~ qo 

we obtain one more dimensionless complex in Eq. (5). If in boundary conditions (17) we take 
v(1) = v~ , then from Eq. (ii) we can find the plasma flow rate through the arc column section 

0 

(18)  

The pressure p is determined from Eq. (13) by integration over h. The value p(1) = p, at 
n = i is unknown, and therefore p, must be found from condition (18). 

In the calculations performed below, boundary conditions are specified for v, or Q (which 
in principle is the same thing), while the value of p(1) is determined by the condition of 
satisfaction of condition (18). 

Integrating Eqs. (14) and (16), we obtain 
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Fig. i. Change in electric field intensity components (Br, Bz), axial velocity com- 
ponent (u), and enthalpy (h) over arc section. Solid lines, Q = 0.i, % =-0.6; 
dashed lines, Q = 0.5, % =-0.25. 

Fig. 2. Change in pressure (p), axial velocity component (~),_and integral quanti- 
ties B, C, and F over arc section. Re = I0, Ro = 0.I, Q = i, u = I. 

The constants C W and C~ are found from the condition P(1) = I, ~(i) = I. 

In solving system (11)-(16) the parameter ~ must be found from an additional condition, 
which proves to be the integral law of conservation of energy. If we integrate Eq. (5) in 
the new variables z, ~ over q from 0 to I, we obtain a second-degree ordinary differential 
equation in %. With consideration of Eq. (I0) this equation degenerates into a second-degree 
algebraic equation in ~: 

1 ! ~ .  

2n , l -n ,  t  21, 
(I + n) 2 . . . .  -h;-  ~l~dN + 

0 0 

* t 2  

0 0 

~d~l -~ O. 

It follows from analysis of the self-similar solutions (19), (20) that: 

2 

i. The dependence of electric field intensity on R(z) has the form E - - ' K  ) 1+a For 
real gases the exponent n varies within the range 0< n~ I . For air n ~ 0.5 and E 
~ - - 1 , 3 S  

2. The axial component of the electric field intensity B z is a monotonically decreas- 
ing function of ~: 

~ , =  G ~+,, , ~ ( ~ ) ~ 0 .  

( 1 + ;~j~.)2Cl+,,~ 

This is also true of the modulus of the electric field vector 
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Ipl= V p~ + p~ = 1 

(1 + ~hf)  ~+'~ 

. The radial component of the intensity B r may be a nonmonotonic function of n: 

3+n 
(l + ~2)2(I+n) 

This is true because the function 

5 ~ - 3 n  

(1 + ~0"~1"0) 2(~+') 

1 ~I § n 
may change sign at the point 0, =-~ 2 ; at 1%1 = I and n = 0.5 we obtain n, = 0.8. 

4. If [2~[ << i , then from system (11)-(16) we can obtain an equation of the boundary 
layer type; in this case ~z ~ const, B r = 0. 

The solution of system (11)-(16) depends on six parameters. Study of their effect on 
the solution is a complex problem, since change of one or the other parameter induces change 
in the entire solution. Calculations have shown that the solution of Eqs. (11)-(16), (21) 
for specified u,, Q, Re, Ro, Pr, and n exists only for one value of X. In determining the 
pressure in Eq. (13) only inertial and magnetic forces were considered, i.e., 

(~) - Ro ~ ~ + ~ ~ -  ( ~ -  ~ 7 )  ~' n~ 

Results of calculating these equations are presented in Figs. 1-4 for Pr = 0.5 and n = 0.5 
and several values of Re, Ro, Q, and u,. Change in the electrical field intensity (Bz, Br) , 
axial velocity (u), and enthalpy (h) over arc section is shown in Fig. 1 for Re = i0, Ro = 
i, u, = 1 and Q values of 0.i (solid lines) and 0.5 (dashed lines). In this regime a solu- 
tion exists only for a narrowing arc (X < 0); in the first case %=--0.6, in the second X = 
--0.25. 

Profiles of pressure p and axial velocity u at Re = i0, Ro = 10 -I , Q = i, u, = 1 are 
shown in Fig. 2. In this case the pressure changes in an unusual manner: two minima exist -- 
one on the axis, the second in the region of the arc boundary, with the second pressure mini- 
mum being deeper. To explain this effect, Fig. 2 also shows the following integral quanti- 
ties: 

1 
F(~) -- Ro 2 

C ( n ) = .  n ~ 

1 �84 ~ 1 

F~ 
- - -  d~l, B (~1) = ,f [ ( ~ -  ;~1~7) 6" - - ~  vl3 

n n 

- -  ~,u v]  d~q, 

dR, p(~) = p(1) + C(~) + F0] ) + B(~) 

It is evident that in the arc boundary zone the function B(n) has a minimum. This is 
because in this region the changes in axial and radial velocity are large because of abrupt 
expansion of the arc. In this regime % = 1 and reverse flows exist in the arc, which is 
clearly evident from the axial velocity profile, which changes sign. In this case the en- 
thalpy profile has a minimum on the axis (Fig. 3, solid lines). This is due to transfer of 
gas flows with a lower temperature by the counterflow from regions lyin~ further down the 
flow. 

The radial velocity ~ in the central region is negative (Fig. 3), after which, not reaching 
the minimum pressure zone, the quantity v increases abruptly. The flow clearly is divided 
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Fig. 3. Pressure, enthalpy, and radial and axial velocity component profiles. Sol- 
id lines, Ro = 0.i, k = i; dashes, Ro = i, % = 0.5. 

Fig. 4. Change in electrical field intensity and angular velocity (m) over arc 
section. Solid lines Ro = 0.i, k = i; dashes, Ro = i, I = 0.5. 

into two regions: an internal one in which the radial velocity is quite low and directed to- 
ward the center, and an external one in which the pressure minimum and temperature maximum 
exist, and the positive radial velocity components are large. Figure 4 shows the changes in 
the quantities ~=F/N, ~z and Br along the arc radius. In the axial region the m values are 
low, so that we can consider the flow therein practically untwisted. The radial electric 
field intensity component Br at the point ~ = 0.8 has a maximum. 

Figures 3-4 show the characteristics of the electric arc (dashed lines) for the same 
conditions but with Ro = 1 and in this case % = 0.5. Hence it can be concluded that the de- 
gree of torsion has a strong influence on the characteristics of an electric arc in a turbu- 
lent flow. 

In conclusion we will note that the existence of two pressure minima has been observed 
in turbulence chambers in the absence of an electric arc [5]. This can apparently be ex- 
plained by stable maintenance of solid particles introduced into the turbulence chamber in 
some orbit or even several orbits. The latter has been confirmed by experimental studies [2], 
with a flow containing smoke particles injected into the chamber. 

NOTATION 

u, axial velocity component; v, radial velocity component; s r , circulation; v~ , 
tangential velocity component; p, plasma density; ~, dynamic viscosity; %t, thermal conduc- 
tivity; Cp, specific heat at constant pressure; o, plasma electrical conductivity; ~e, mag- 
netic permittivity; Ez, Er, electric field intensity components along axis z and radius r, 
respectively; I, total current; B~, electric arc magnetic field; ~, electric current func- 
tion; Fo, circulation at electric arc boundary; Ro = uoRo/s Rossby number; Re = puoRo/~, 
Reynolds number; Pr, Prandtl number; Pe = RePr, Peclet number. 
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